

General Description

The MAX4330–MAX4334 single/dual/quad op amps combine a wide 3MHz bandwidth, low-power operation, and excellent DC accuracy with Rail-to-Rail® inputs and outputs. These devices require only 245 μ A per amplifier, and operate from either a single +2.3V to +6.5V supply or dual ±1.15V to ±3.25V supplies. The input commonmode voltage range extends 250mV beyond VEE and VCC, and the outputs swing rail-to-rail. The MAX4331/ MAX4333 feature a shutdown mode in which the output goes high impedance and the supply current decreases to 9 μ A per amplifier.

Low-power operation combined with rail-to-rail input common-mode range and output swing makes these amplifiers ideal for portable/battery-powered equipment and other low-voltage, single-supply applications. Although the minimum operating voltage is specified at 2.3V, these devices typically operate down to 2.0V. Low offset voltage and high speed make these amplifiers excellent choices for signal-conditioning stages in precision, low-voltage data-acquisition systems. The MAX4330 is available in the space-saving 5-pin SOT23 package, and the MAX4331/MAX4333 are offered in a μ MAX package.

Applications

Portable/Battery-Powered Equipment

Data-Acquisition Systems

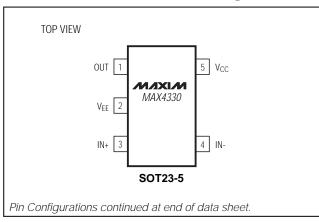
Signal Conditioning

Low-Power, Low-Voltage Applications

_____Features

- **♦ 3MHz Gain-Bandwidth Product**
- **♦ 245µA Quiescent Current per Amplifier**
- Available in Space-Saving SOT23-5 Package (MAX4330)
- **♦** +2.3V to +6.5V Single-Supply Operation
- ♦ Rail-to-Rail Input Common-Mode Voltage Range
- ♦ Rail-to-Rail Output Voltage Swing
- ♦ 250µV Offset Voltage
- ♦ Low-Power, 9µA (per amp) Shutdown Mode (MAX4331/MAX4333)
- **♦ No Phase Reversal for Overdriven Inputs**
- ♦ Capable of Driving 2kΩ Loads
- ♦ Unity-Gain Stable

Ordering Information


PART	TEMP. RANGE	PIN- PACKAGE	SOT TOP MARK
MAX4330EUK-T	-40°C to +85°C	5 SOT23-5	ABAJ
MAX4331ESA	-40°C to +85°C	8 SO	_
MAX4331EUA	-40°C to +85°C	8 µMAX	_
MAX4332ESA	-40°C to +85°C	8 SO	_
MAX4333ESD	-40°C to +85°C	14 SO	_
MAX4333EUB	-40°C to +85°C	10 μMAX	_
MAX4334ESD	-40°C to +85°C	14 SO	_

Selector Guide

PART	NO. OF AMPS PER PACKAGE	SHUTDOWN MODE	PIN-PACKAGE
MAX4330	1	_	5-pin SOT23
MAX4331	1	Yes	8-pin SO/μMAX
MAX4332	2	_	8-pin SO
MAX4333	2	Yes	10-pin μMAX, 14-pin SO
MAX4334	4	_	14-pin SO

Rail-to-Rail is a registered trademark of Nippon Motorola Ltd.

Pin Configurations

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

Supply Voltage, V _{CC} to V _{EE}	10-Pin µMAX (derate 5.60mW/°C above +70°C)444mW 14-Pin SO (derate 8.33mW/°C above +70°C)667mW Operating Temperature Ranges
(short to either supply) Continuous Power Dissipation (T _A = +70°C) 5-Pin SOT23 (derate 7.1mW/°C above +70°C)571mW 8-Pin SO (derate 5.88mW/°C above +70°C)471mW	MAX433_C/D
8-Pin µMAX (derate 4.10mW/°C above +70°C)330mW	Lead Temperature (soldering, 10sec)+300°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.3V \text{ to } +6.5V, V_{EE} = 0V, V_{CM} = 0V, V_{OUT} = (V_{CC} / 2), R_L \text{ tied to } (V_{CC} / 2), V_{\overline{SHDN}} \ge 2V, T_A = +25^{\circ}C$, unless otherwise noted.)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS						
			MAX433_	_EUA/EUB		±0.65	±1.5							
			MAX4330	DEUK		±0.65	±1.5							
Input Offset Voltage	Vos	V _{CM} = VEE to V _{CC}	MAX433	1ESA		±0.25	±0.6	mV						
		VEE TO VCC	MAX4332	2ESA/MAX4333ESD		±0.25	±0.9							
			MAX433	4ESD		±0.25	±1.0							
Input Bias Current	IB	VEE < VCM < V	CC			±25	±65	nA						
Input Offset Current	los	VEE < VCM < V	CC			±1	±12	nA						
Differential Input Resistance	RIN(DIFF)	V _{IN} + - V _{IN} - <	1.4V			2.3		MΩ						
Differential imput Resistance	MIN(DIFF)	VIN+ - VIN- >	2.5V			2		kΩ						
Common-Mode Input Voltage Range	V _{CM}				-0.25		V _{CC} + 0.25	V						
				MAX433_EUA/EUB	68	88								
				MAX4330EUK	67	87		- dB						
			Vcc =	MAX4331ESA	74	93								
		-0.25V < V _{CM} < (V _{CC} + 0.25V)	5V	MAX4332ESA/ MAX4333ESD	71	93								
Common-Mode	OMPD			MAX4334ESD	69	92								
Rejection Ratio	CMRR									MAX433_EUA/EUB	65	84		
							MAX4330EUK	64	82					
			2.3V MAX4332ES/ MAX4333ESI	MAX4331ESA	71	90		dB						
				MAX4332ESA/ MAX4333ESD	69	90								
				MAX4334ESD	66	89		1						
			•	MAX433_EUA/EUB	76	88								
				MAX4330EUK	76	88		-						
Power-Supply Rejection Ratio	PSSR	V _{CC} = 2.3V to 6	, 5\/	MAX4331ESA	79	92		dB						
rower-supply Rejection Ratio	FOOK	V((- 2.3V (0 C	J. J V	MAX4332ESA/ MAX4333ESD	77	90		- ub						
		MAX4334ESD		MAX4334ESD	75	90		1						
Output Resistance	Rout	A _V = 1				0.1		Ω						
Off-Leakage Current in Shutdown	IOUT(SHDN)	V SHDN < 0.8V,	V _{OUT} = 0\	/ to V _{CC}		±0.1	±2	μΑ						

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.3V \text{ to } +6.5V, V_{EE} = 0V, V_{CM} = 0V, V_{OUT} = (V_{CC} / 2), R_L \text{ tied to } (V_{CC} / 2), V_{\overline{SHDN}} \ge 2V, T_A = +25^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL		CONDITIONS		MIN	TYP	MAX	UNITS
		V _{CC} = 2.3V	V _{OUT} = 0.2V to 2.1	$V_{OUT} = 0.2V$ to 2.1V, $R_L = 100k\Omega$				
Large-Signal Voltage Gain	A. (a.	VCC = 2.3V	V _{OUT} = 0.35V to 1	.95V, $R_L = 2k\Omega$	78	90		1 10
Large-Signal Vollage Gain	Avol	V _{CC} = 5V	Vout = 0.2V to 4.8	BV , $RL = 100k\Omega$	93	120		- dB
		VCC = 5V	V _{OUT} = 0.35V to 4	.65V, $R_L = 2k\Omega$	83	95		
		$R_{l} = 100k\Omega$	V _{CC} - V _{OH}			8	30	
Output Voltage Swing	Vout	KL = 100K22	VoL			8	30	mV
Output Voltage Swing	VOU1	$R_1 = 2k\Omega$	V _{CC} - V _{OH}			100	175	
		NL - 2NS2	V _{OL}			70	150	
Output Short-Circuit Current	I _{SC}							mA
SHDN Logic Threshold	VIL	Low (shutdo	own mode)				0.8	V
(Note 1)	VIH	High (norma	al mode)		2.0]
SHDN Input Current		VEE < VSHD	<u>on</u> < ACC				±2	μΑ
Operating Supply-Voltage Range	Vcc				2.3		6.5	V
Quiescent Supply Current	loo	$V_{CM} = V_{OUT} = V_{CC} / 2$		V _C C = 5V		275	325	
per Amplifier	Icc	VCIVI - VOUT	- VCC / 2	$V_{CC} = 2.3V$		245	290	μΑ
Shutdown Supply Current	oply Current I _{CC} (SHDN) VSHDN < 0.8V				17	25	μΑ	
per Amplifier	ICC(SHDN)	* 3HDIN * 0.		$V_{CC} = 2.3V$		9	14	μ, τ

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.3V \text{ to } +6.5V, V_{EE} = 0V, V_{CM} = 0V, V_{OUT} = (V_{CC} / 2), R_L \text{ tied to } (V_{CC} / 2), V_{\overline{SHDN}} \ge 2V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C, \text{ unless otherwise noted.})$

PARAMETER	SYMBOL	CONDITIONS				TYP	MAX	UNITS
			MAX43	MAX433_EUA			±3.2	
			MAX43	33_EUK/EUB			±3.8	1
Input Offset Voltage	Vos	V _{CM} = V _{EE} to V _{CC}	MAX43	331ESA			±0.7	mV
		AEE 10 ACC	MAX43	332ESA/MAX4333ESD			±1	
			MAX43	334ESD			±1	1
Offset-Voltage Tempco	ΔV _{OS} /ΔΤ					±3		μV/°C
Input Bias Current	lΒ	VEE < VCM < V	V _{EE} < V _{CM} < V _{CC}				±115	nA
Input Offset Current	los	VEE < VCM < V	CC				±15	nA
				MAX433_EUA	72			
				MAX433_EUK/EUB	IAX433_EUK/EUB 71		1	
Power-Supply Rejection Ratio	PSRR	\/\(\alpha\) 2 2\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. EV	MAX4331ESA	76			dB
rower-supply Rejection Ratio	PORK	Vcc = 2.3V to 6.5V MAX4332ESA/ MAX4333ESD MAX4334ESD			73			ub
				71			1	
Common-Mode Input Voltage Range	V _{CM}			•	-0.15		Vcc + 0.15	V

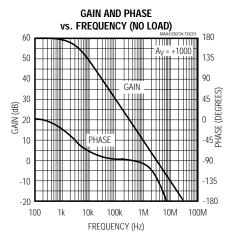
DC ELECTRICAL CHARACTERISTICS (continued)

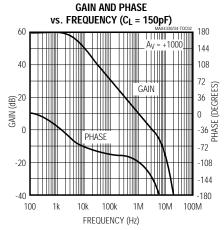
(VCC = +2.3V to +6.5V, VEE = 0V, VCM = 0V, VOUT = (VCC / 2), RL tied to (VCC / 2), $V\overline{SHDN} \ge 2V$, $TA = -40^{\circ}C$ to +85°C, unless otherwise noted.)

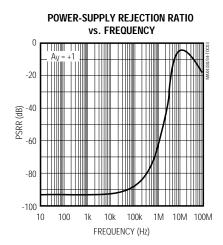
PARAMETER	SYMBOL		CONDITIONS			TYP	MAX	UNITS	
				MAX433_EUA/EUB	63				
				MAX4330EUK	62			1	
			V _{CC} =	MAX4331ESA	72				
			5V	MAX4332ESA/ MAX4333ESD	69				
Common-Mode	01455	-0.25V <		MAX4334ESD	67				
Rejection Ratio	CMRR	V _{CM} < (V _{CC} + 0.25)	/)	MAX433_EUA/EUB	58			dB	
		(*66 + 6.26	,	MAX4330EUK	57			1	
			V _{CC} =	MAX4331ESA	68			1	
			2.3V	MAX4332ESA/ MAX4333ESD	66			-	
				MAX4334ESD	65				
Off-Leakage Current in Shutdown	I _{OUT} (SHDN)	V SHDN < 0.8	$V_{\overline{SHDN}}$ < 0.8V, V_{OUT} = 0V to V_{CC}				±5	μА	
			V _{OUT} = 0.2	V to 2.1V, $R_L = 100k\Omega$	90				
	A _{VOL}	$V_{CC} = 2.3V$	$V_{OUT} = 0.35V \text{ to } 1.95V, R_L = 2k\Omega$		70			dB	
Large-Signal Voltage Gain			$V_{OUT} = 0.2V \text{ to } 4.8V, R_L = 100k\Omega$		90				
		$V_{CC} = 5V$	$V_{OUT} = 0.35V \text{ to } 4.65V, R_L = 2k\Omega$		74			1	
			VCC - VOH				40		
		$R_L = 100k\Omega$	V _{OL}				40	mV	
Output Voltage Swing	Vout		V _{CC} - V _{OH}				200		
		$R_L = 2k\Omega$	$R_L = 2k\Omega$				180	-	
SHDN Logic Threshold	VIL	Low (shutdo	wn mode)				0.8		
(Note 1)	VIH	High (norma	l mode)		2.0			V	
SHDN Input Current		VEE < VSHDN < VCC					±2	μA	
Operating Supply-Voltage Range	Vcc	$T_A = -40$ °C to $+85$ °C			2.3		6.5	V	
Quiescent Supply Current	Icc	Vcm = Vout	- Vcc / 2	Vcc = 5V			350	μΑ	
per Amplifier	100	V CIVI - V OUT	- VCC / 2	V _{CC} = 2.3V			330	μΑ	
Shutdown Supply Current	ICC(SHDN)	V <u>SHDN</u> < 0.8	BV	V _{CC} = 5V			30	μА	
per Amplifier	1.00(011014)	* 31 IDIN * 0.0 *		$V_{CC} = 2.3V$			17	P'' '	

Note 1: SHDN logic thresholds are referenced to VEE.

Note 2: The MAX4330EUK is 100% tested at $T_A = +25$ °C. All temperature limits are guaranteed by design.

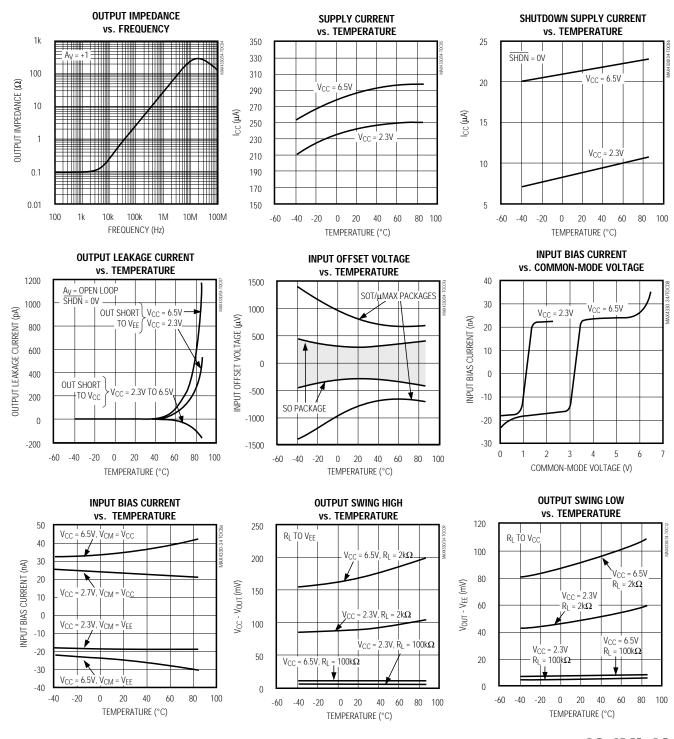

AC ELECTRICAL CHARACTERISTICS

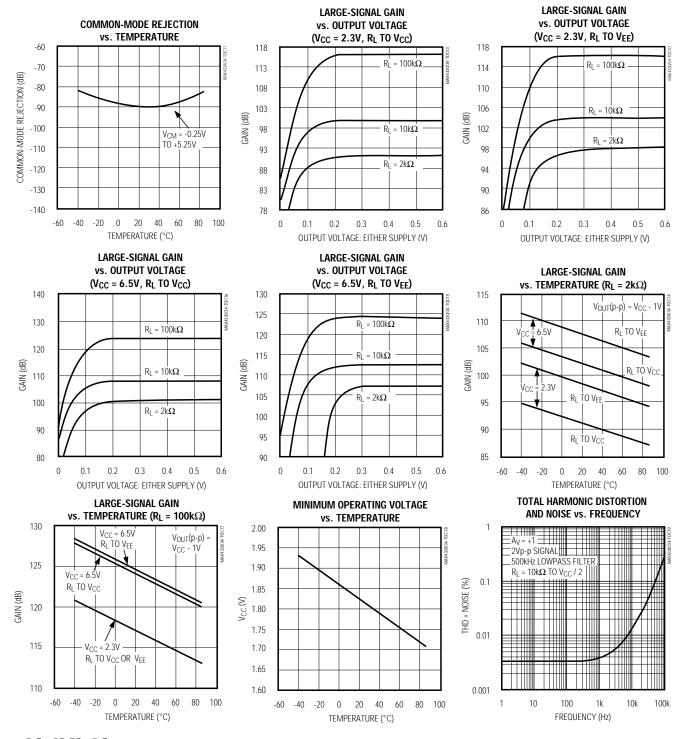

 $(V_{CC} = +5V, V_{EE} = 0V, V_{CM} = 0V, V_{OUT} = (V_{CC} / 2), R_L = 10k\Omega$ to $(V_{CC} / 2), V_{\overline{SHDN}} \ge 2V, C_L = 15pF, T_A = +25^{\circ}C$, unless otherwise noted.)


PARAMETER	SYMBOL	CONDITIONS	MIN TYP MAX	UNITS
Gain-Bandwidth Product	GBWP		3	MHz
Full-Power Bandwidth	FPBW	Vout = 4Vp-p	190	kHz
Slew Rate	SR		1.5	V/µs
Phase Margin	PM		55	degrees
Gain Margin	GM		10	dB
Total Harmonic Distortion	THD	$f = 10kHz$, $V_{OUT} = 2Vp-p$, $A_{VCL} = +1V/V$	0.012	%
Settling Time to 0.01%	ts	$A_V = +1V/V$, 2V step	4	μs
Input Capacitance	CIN		3	pF
Input Noise Voltage Density	Vnoise	f = 10kHz	28	nV/√Hz
Input Current Noise Density	INOISE	f = 10kHz	0.26	pA/√Hz
Crosstalk		f = 10kHz, MAX4332/MAX4333/MAX4334	-124	dB
Capacitive Load Stability		A _V = 1, no sustained oscillations	150	pF
Shutdown Time	tshon		0.8	μs
Enable Time from Shutdown	tenable		1	μs
Power-Up Time	ton		5	μs

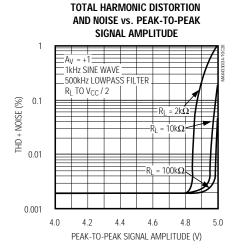
Typical Operating Characteristics

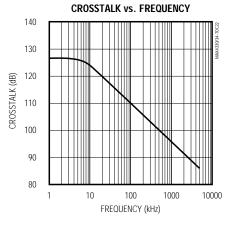
($V_{CC} = +5V$, $V_{EE} = 0V$, $V_{CM} = V_{CC} / 2$, $V_{\overline{SHDN}} > 2V$, $T_A = +25$ °C, unless otherwise noted.)

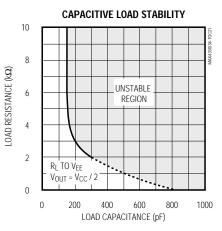



Typical Operating Characteristics (continued)

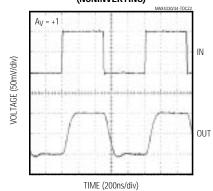
(VCC = +5V, VEE = 0V, VCM = VCC / 2, VSHDN > 2V, TA = +25°C, unless otherwise noted.)

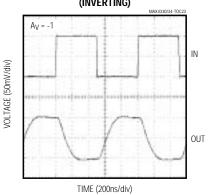

Typical Operating Characteristics (continued)

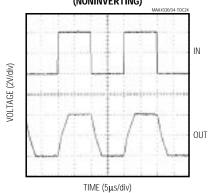

(VCC = +5V, VEE = 0V, VCM = VCC / 2, VSHDN > 2V, TA = +25°C, unless otherwise noted.)

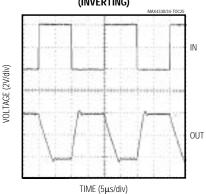


Typical Operating Characteristics (continued)


 $(V_{CC} = +5V, V_{EE} = 0V, V_{CM} = V_{CC} / 2, V_{\overline{SHDN}} > 2V, T_A = +25^{\circ}C, unless otherwise noted.)$




SMALL-SIGNAL TRANSIENT RESPONSE (NONINVERTING)



LARGE-SIGNAL TRANSIENT RESPONSE (NONINVERTING)

LARGE-SIGNAL TRANSIENT RESPONSE (INVERTING)

Pin Description

		P	IN				
			MAX	(4333		NAME	FUNCTION
MAX4330	MAX4331	MAX4332	10-Pin μΜΑΧ	14-Pin SO	MAX4334	10.00	. 5.15.115.11
1	6	=	_	_	=	OUT	Output
2	4	4	4	4	11	VEE	Negative Supply. Ground for single- supply operation.
3	3	_	_	_	_	IN+	Noninverting Input
4	2	_		_	_	IN-	Inverting Input
5	7	8	10	14	4	Vcc	Positive Supply
_	1, 5	_	_	5, 7, 8, 10	_	N.C.	No Connection. Not internally connected.
_	_	1, 7	1, 9	1, 13	1, 7	OUT1, OUT2	Outputs for Amplifiers 1 and 2
_	_	3, 5	3, 7	3, 11	3, 5	IN1+, IN2+	Noninverting Inputs to Amplifiers 1 and 2
_	_	2, 6	2, 8	2, 12	2, 6	IN1-, IN2-	Inverting Inputs to Amplifiers 1 and 2
_	8	_	_	_	_	SHDN	Shutdown Input for Amplifier. Drive low for shutdown mode. Drive high or connect to VCC for normal operation.
_	_	_	5, 6	6, 9	_	SHDN1, SHDN2	Shutdown for Amplifiers 1 and 2. Drive low for shutdown mode. Drive high or connect to V _{CC} for normal operation.
_	_	_	_	_	8, 14	OUT3, OUT4	Outputs for Amplifiers 3 and 4
_	_	_	_	_	9, 13	IN3-, IN4-	Inverting Inputs for Amplifiers 3 and 4
_	_	_	_	_	10, 12	IN3+, IN4+	Noninverting Inputs for Amplifiers 3 and 4

_Detailed Description

Rail-to-Rail Input Stage

The MAX4330–MAX4334 have rail-to-rail input and output stages that are specifically designed for low-voltage, single-supply operation. The input stage consists of separate NPN and PNP differential stages, which operate together to provide a common-mode range extending to 0.25V beyond both supply rails. The crossover region, which occurs halfway between VCC and VEE, is extended to minimize degradation in CMRR caused by mismatched input pairs. The input offset voltage is typically 250µV. Low offset voltage, high bandwidth, rail-to-rail common-mode input range, and rail-to-rail outputs make this family of op amps an excellent choice for precision, low-voltage data-acquisition systems.

Since the input stage consists of NPN and PNP pairs, the input bias current changes polarity as the input voltage passes through the crossover region. Match the effective impedance seen by each input to reduce the offset error due to input bias currents flowing through external source impedances (Figures 1a and 1b). The combination of high source impedance with input capacitance (amplifier input capacitance plus stray capacitance) creates a parasitic pole that produces an underdamped signal response. Reducing input capacitance or placing a small capacitor across the feedback resistor improves response.

The MAX4330–MAX4334's inputs are protected from large differential input voltages by internal $1k\Omega$ series resistors and back-to-back triple diode stacks across the inputs (Figure 2). For differential input voltages (much less than 1.8V), input resistance is typically $2.3M\Omega.$ For differential input voltages greater than 1.8V, input resistance is around $2k\Omega,$ and the input bias current can be approximated by the following equation:

$$IBIAS = (VDIFF - 1.8V) / 2k\Omega$$

In the region where the differential input voltage approaches 1.8V, input resistance decreases exponentially from 2.3M Ω to 2k Ω as the diode block begins conducting. Inversely, the bias current increases with the same curve.

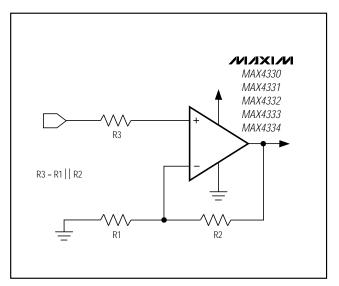


Figure 1a. Reducing Offset Error Due to Bias Current (Noninverting)

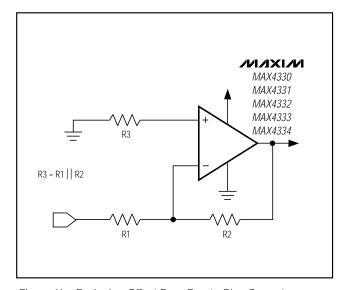


Figure 1b. Reducing Offset Error Due to Bias Current (Inverting)

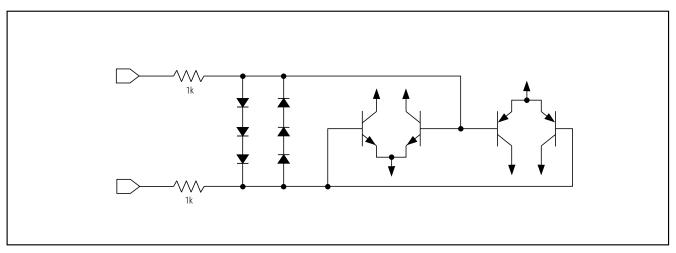


Figure 2. Input Protection Circuit

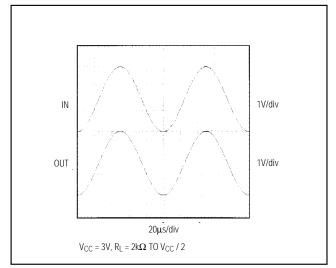


Figure 3. Rail-to-Rail Input/Output Voltage Range

Rail-to-Rail Output Stage

The MAX4330–MAX4334 output stage can drive up to a $2k\Omega$ load and still typically swing within 125mV of the rails. Figure 3 shows the output voltage swing of a MAX4331 configured as a unity-gain buffer. The operating voltage is a single +3V supply, and the input voltage is 3Vp-p. The output swings to within 70mV of VEE and 100mV of VCC, even with the maximum load applied ($2k\Omega$ to mid-supply).

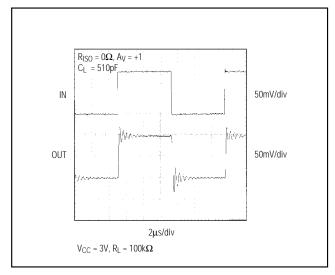


Figure 4. Small-Signal Transient Response with Excessive Capacitive Load

Driving a capacitive load can cause instability in many op amps, especially those with low quiescent current. The MAX4330–MAX4334 are stable for capacitive loads up to 150pF. The Capacitive Load Stability graph in the *Typical Operating Characteristics* gives the stable operating region for capacitive vs. resistive loads. Figures 4 and 5 show the response of the MAX4331 with an excessive capacitive load, compared with the response when a series resistor is added between the output and the capacitive load. The resistor improves the circuit's response by isolating the load capacitance from the op amp's output (Figure 6).

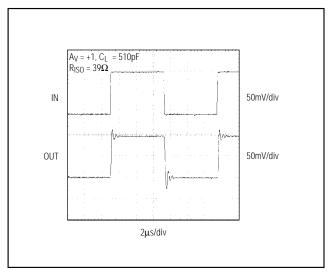


Figure 5. Small-Signal Transient Response with Excessive Capacitive Load and Isolation Resistor

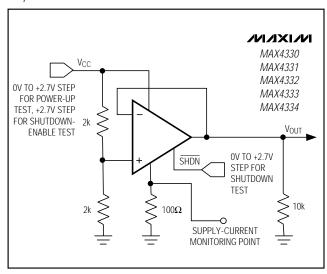


Figure 7. Power-Up/Shutdown Test Circuit

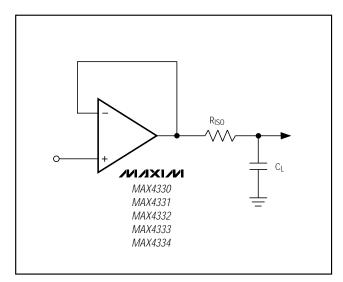


Figure 6. Capacitive-Load-Driving Circuit

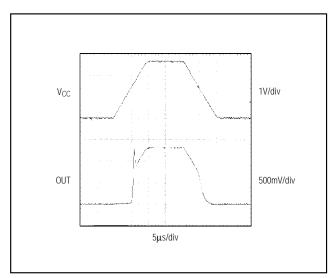


Figure 8. Power-Up/Down Output Voltage

_Applications Information

Power-Up

The MAX4330–MAX4334 outputs typically settle within 5µs after power-up. Using the test circuit of Figure 7, Figures 8 and 9 show the output voltage and supply current on power-up and power-down.

Shutdown Mode

The MAX4331/MAX4333 feature a low-power shutdown mode. When the shutdown pin (SHDN) is pulled low, the supply current drops to $9\mu A$ per amplifier (typical), the amplifier is disabled, and the outputs enter a high-impedance state. Pulling SHDN high or leaving it floating enables the amplifier. Figures 10 and 11 show the MAX4331/MAX4333's output voltage and supply-current responses to a shutdown pulse.

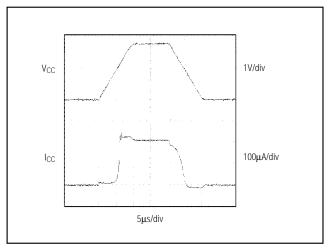


Figure 9. Power-Up/Down Supply Current

Do not three-state SHDN. Due to the output leakage currents of three-state devices and the small internal pull-up current for SHDN, three-stating this pin could result in indeterminate logic levels, and could adversely affect op-amp operation.

The logic threshold for \overline{SHDN} is always referred to VEE, **not** GND. When using dual supplies, pull \overline{SHDN} to VEE to place the op amp in shutdown mode.

Power Supplies and Layout

The MAX4330–MAX4334 operate from a single $\pm 2.3V$ to $\pm 6.5V$ power supply, or from dual $\pm 1.15V$ to $\pm 3.25V$ supplies. For single-supply operation, bypass the power supply with a $0.1\mu F$ capacitor to ground (V_{EE}). For dual supplies, bypass both V_{CC} and V_{EE} with their own set of capacitors to ground.

Good layout technique helps optimize performance by decreasing the amount of stray capacitance at the op amp's inputs and outputs. To decrease stray capacitance, minimize trace lengths by placing external components close to the op amp's pins.

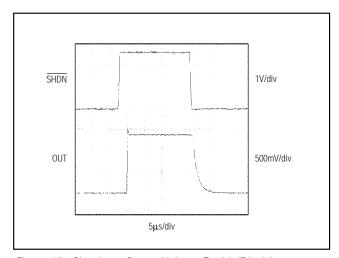


Figure 10. Shutdown Output Voltage Enable/Disable

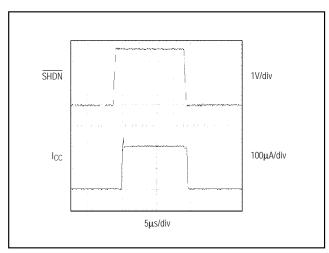
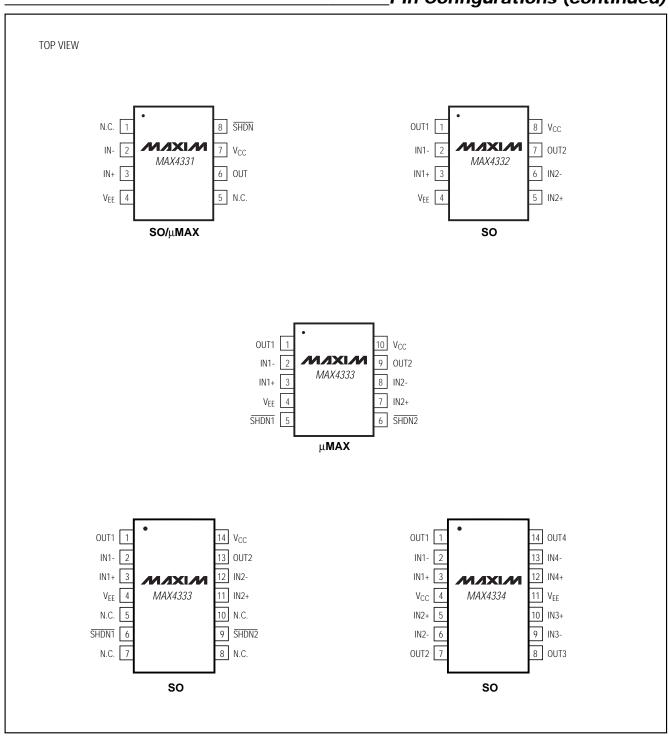



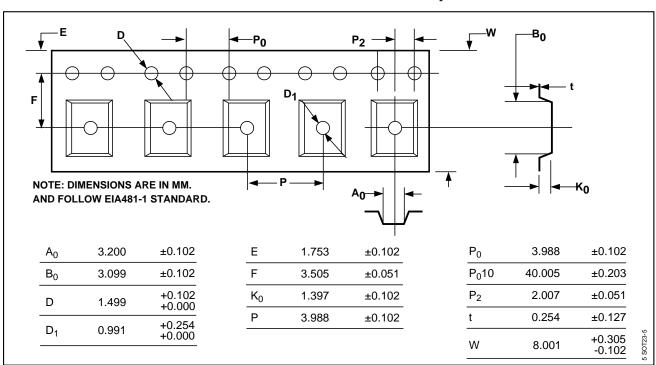
Figure 11. Shutdown Enable/Disable Supply Current

Pin Configurations (continued)

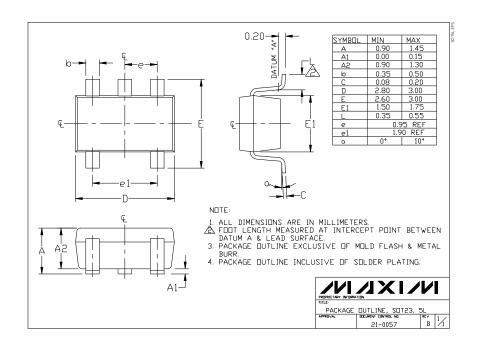
Chip Information

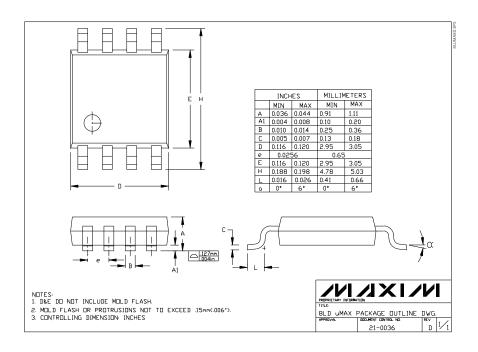
MAX4330/MAX4331

TRANSISTOR COUNT: 199 SUBSTRATE CONNECTED TO VEE


MAX4332/MAX4333

TRANSISTOR COUNT: 398 SUBSTRATE CONNECTED TO V_{FF}


MAX4334


TRANSISTOR COUNT: 796 SUBSTRATE CONNECTED TO VEE

Tape-and-Reel Information

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

16 _____Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600